

Fall Chinook Work Group

Tuesday, 31 March 2015 Grant PUD (USBOR Building)

Ephrata, WA

Technical members

Paul Wagner, NMFS Jeff Fryer, CRITFC Holly Harwood, BPA Keith Truscott, CPUD Bill Tweit, WDFW Patrick McGuire, WDOE Peter Graf, GCPUD Steve Hemstrom, CPUD Joe Skalicky/Don Anglin, USFWS Paul Ward/Bob Rose, YN Brett Swift, American Rivers Tom Kahler, DPUD Paul Hoffarth, WDFW John Clark, ADFG Todd Pearsons, GCPUD

Attendees: (*Denotes Technical member)

Peter Graf, GCPUD* Paul Hoffarth, WDFW* (Phone) John Clark, ADFG* Todd Pearsons*, GCPUD Tracy Hillman, Facilitator Jeff Fryer, CRITFC* (Phone) Paul Wagner, NMFS* (Phone) Ryan Harnish, Battelle (Phone) Geoff McMichael, Mainstem Fish Res

Action Items:

- 1. Peter Graf will provide updates on the HRFCPPA Periods and Flow Constraints.
- 2. Paul Hoffarth will provide the 2014 egg retention report to the FCWG/HRWG by October 2015.

Meeting Minutes

- I. Welcome and Introductions Tracy Hillman welcomed attendees to the meeting. Attendees introduced themselves.
- **II.** Agenda Review The agenda was reviewed and approved.
- III. Approval of Meeting Minutes
 - The February Meeting Minutes were reviewed and approved with edits.
- **IV. Review of Action Items** Action items identified during the February meeting were discussed.
 - Peter Graf will provide updates on the HRFCPPA Periods and Flow Constraints. **Ongoing.**
 - Paul Hoffarth will provide the 2014 egg retention report to the FCWG/HRWG by October 2015. Ongoing. Paul is waiting for the otolith analyses. He will provide the report (memo) to the FCWG when the otolith analyses are complete.

V. Update on Wanapum Dam Issues

Peter Graf gave an update on the status of Wanapum Dam. Peter said that Grant PUD began filling the reservoir on 16 March at a rate of about 2.5 feet per day. By 21 March the reservoir reached a level of 571.1 feet.

Peter noted that construction/repairs continue on the dam. Those should be completed by late May. Trash rack modifications were removed about two weeks ago.

Peter stated that all ladders are fully operational and providing fish passage.

VI. Final Report and Implementation Feasibility Study/Implementation Feasibility Plan

Peter Graf indicated that he addressed all the comments received from WDFW, USFWS, ADFG, CRITFC, NOAA Fisheries, Battelle, Mainstem Fish Research, and BioAnalysts. Peter indicated that he worked with each commenter on how to address the comments. He also produced a separate document that identifies the commenter, the comment number, report section and paragraph, the comment, and Grant PUD's response to the comment. In addition, Grant PUD is currently working on uploading all the supporting technical documents on the web. Peter noted that the final report is currently going through internal review. After the review is complete, the document will be sent to Ecology on or before 17 April.

VII. HRWG Activities

2014-2015 Protection Program Implementation – Peter Graf reported that flow fluctuation constraints are currently in effect. Fall Chinook emergence began on 26 February. The post-emergent period is expected to begin on 5 May. Peter noted that there have been no exceedances during the spawning, incubation, or emergence periods. Peter said that all temperature and flow data are displayed in the Fixed Site Monitoring – Monthly Summary files on the Grant PUD Water Quality Website (<u>http://grantpud.org/environment/water-</u> <u>quality/monitoring-data</u>). The temperature unit tracking spreadsheet is found under "Monthly Summaries (xls)."

Peter indicated that he will continue to provide updates on protection flows (i.e., HRFCPPA Periods and Flow Constraints).

2015 Fall Chinook Run Forecast – Paul Hoffarth gave a presentation on Hanford Reach fall Chinook run forecasts and harvest management (see Attachment #1). Paul began by discussing the analytical tools used in forecasting, including both regression procedures and cohort ratios. Paul also described the use of juvenile-to-adult CWT expansions and adult-to-adult CWT expansions. Based on this work, Paul reported that the forecast for 2015 is about 900,200 adult fall Chinook to the Columbia River. The Upriver Bright forecast is about 500,300 adult Chinook. The Hanford Reach forecast is about 250,000 adults (about 98,572 to Priest Rapids Hatchery, 23,146 to Ringold Hatchery, and 127,543 to the Reach).

Paul then described the Hanford Reach Fall Chinook Management Plan. He described how harvest is allocated based on returns less than or greater than 36,000 adults. He indicated that they currently use an escapement goal of 28,800 adults; however, this will likely change based on the stock-recruitment work conducted by Ryan Harnish and others. Paul showed both in-season return estimates and weekly and cumulative harvest. Paul noted that by 15 September, he will have a rough estimate of the return and can reduce harvest by closing the season or reducing the daily limit.

John Clark commented that in order to increase precision in the run forecasts, WDFW should include ocean harvest in their analyses. John provided the following figures that show the composition of stocks within the Southeast Alaska (SEAK) and Northern British Columbia (NBC) fisheries. It is clear that upper Columbia summer and fall Chinook made up a larger percentage of the catch in 2014 than in previous years. John noted that by adding the ocean harvest data to the run forecast, the accuracy of the 2014 estimate would have been much closer to the actual escapement size. As a final point, John noted that the run forecasts should include confidence intervals.

2014 Egg Retention Report – Paul Hoffarth indicated that he will provide the 2014 egg retention report to the FCWG/HRWG after the analyses of otoliths are complete. Nonetheless, Paul shared with the group his spreadsheets that show the spawning success of fall Chinook in the Hanford Reach (see tables below). Paul noted that the combined spawning success of fall Chinook in 2014 was 93.3%. About 79.8% of the fish voided all their eggs in 2014. About 81.1% of the wild fish voided all their eggs, while about 63.8% of the hatchery fish voided all their eggs. The percentages of wild and hatchery fish that successfully spawned will likely change after the otoliths are analyzed.

Vear	Total		Adult	Adult		Perce	nt Spawnee	1		Spav	wn Success
I cai	Sample	Jacks	Male	Female	100%	75%	50%	25%	0%	100%	Combined
2004	1,807	36	595	1,176	1,151		21		4	97.9%	98.8%
2005	2,096	19	754	1,323	1,310		6		7	99.0%	99.2%
2006	565	34	179	352	343	0	8	0	1	97.4%	98.6%
2007	724	4	266	454	443	0	8	0	3	97.6%	98.5%
2008	1,061	20	457	584							
2009*	849	23	327	499	484	0	5	0	10	97.0%	97.5%
2010	2,355	35	1,147	1,173	1,147	6	13	1	6	97.8%	98.7%
2011	2,172	51	857	1,264	1,203	1	52	5	3	95.2%	97.4%
2012**	1,651	67	813	771	747	14	5	1	4	96.9%	98.6%
2013**	2,117	59	1,373	685	536	90	20	16	23	78.2%	90.1%
2014	3,259	86	1,537	1,636	1,305	285	11	9	26	79.8%	93.3%
Mean	1,696	39	755	902						93.7%	97.1%

* Spawn success was categorized as fully spawned or partial spawn from 2009 and earlier

** Otoliths were used in addition to adipose clips and CWTs to determine origin. Ages 2-4 could be identified by otoliths

				1	Wild				
Year		Per	cent Spawne	d			Spawn Success		
	Sampled	100%	75%	50%	25%	0%	100%	Combined	
2009*	494	482		12			97.6%	98.8%	
2010	1,125	1,101	6	12	1	5	97.9%	98.8%	
2011	1,176	1,121	1	48	4	2	95.3%	97.5%	
2012**	681	658	14	5	1	3	96.6%	98.6%	
2013**	461	392	51	9	3	6	85.0%	94.5%	
2014	1,506	1,222	254	6	5	19	81.1%	94.1%	
Mean	907						92.3%	98.8%	

				Ha	tchery*				
Year		Per	cent Spawne	d			Spawn Success		
	Sampled	100%	75%	50%	25%	0%	100%	Combined	
2009*	13	12		1			92.3%	96.2%	
2010	48	46		1		1	95.8%	96.9%	
2011	88	82		4	1	1	93.2%	95.7%	
2012**	90	89	0	0	0	1	98.9%	98.9%	
2013**	224	144	39	11	13	17	64.3%	81.3%	
2014	130	83	31	5	4	7	63.8%	84.4%	
Mean	99						84.7%	92.2%	

* hatchery origin was based on adipose clip and/or CWT origin

2015 Northwest Scientific Association Annual Meeting – Tracy Hillman reported that the 2015 Northwest Scientific Association Annual Conference is taking place at Columbia Basin College in Pasco, WA on 1-4 April. The conference will examine *Past, Present, and Future Challenges to Natural and Managed Ecosystems: sagebrush, salmon,*

and syrah in a non-stationary environment. PNNL is hosting a symposium on Fish Passage and Salmon Recovery in the Columbia River Basin. Additional information on the conference can be found at: http://www.northwestscience.org/2015meeting

VIII. Qualitative Assessment of Egg Loss

Geoff McMichael gave a presentation on fall Chinook egg loss in the Hanford Reach (see Attachment #2). Geoff began by providing a brief background on Hanford Reach fall Chinook and the possibility of density dependence affecting pre-smolt recruitment at high spawning escapements. Geoff indicated that high spawning escapements could result in density-dependence mortality during the spawning period or during early juvenile rearing. Geoff explored that possibility that high escapements increase the number of eggs dislodged during fall Chinook spawning. He used underwater observations and underwater video to assess the number of eggs visible on the substrate within four spawning areas in the Hanford Reach. Each of the four spawning areas had equivalent spawning habitat.

Geoff found that despite high escapement levels and high redd densities (with overlapping redd margins), few eggs were actually observed on the substrate. Geoff noted that if eggs were dug up, they may not have detected them because of the timing of their surveys (they conducted their surveys during the daytime; Oldenburg et al. captured drifting eggs mostly at night) and/or because scavengers consumed the eggs before the surveys were conducted. Nevertheless, the surveys showed that redd superimposition did not result in widespread loss of buried eggs. It also demonstrated that the quantity of spawning habitat may be greater than previously thought.

Geoff provided the following link, which is a short video of the egg-loss work in the Hanford Reach: <u>https://youtu.be/NutSOf04mIU</u>

IX. Next Meeting: The FCWG will next meet on Tuesday morning, 6 October 2015 at Grant PUD in Ephrata, WA.

Attachment 1

Presentation by Paul Hoffarth on Hanford Reach Fall Chinook Forecasts and Harvest Management

HANFORD REACH FALL CHINOOK FORECASTS & HARVEST MANAGEMENT AGREEMENT

2014 Forecast/Actual Re	2014 Forecast/Actual Returns and 2015 Preseason Forecasts										
Stack Crown	20	014	2015								
Stock Group	Forecasts	Actual Returns	Forecasts								
Lower River Hatchery - LRH	110,000	101,800	94,900								
Lower River Wild - LRW	34,200	25,800	18,900								
Bonneville Pool Hatchery - BPH	115,100	127,000	160,500								
Upriver Bright – URB	973,300	684,200	500,300								
Bonneville Upriver Bright - BUB	49,500	33,900	26,800								
Pool Upriver Bright - PUB	310,600	169,900	86,500								
Select Area Bright - SAB	10,200	16,500	12,300								
Columbia River Total	1,602,900	1,159,100	900,200								

COLUMBIA RIVER FALL CHINOOK

Table 1. 2	015 Colur (in thousa	nbia F ands (River Adul of fish).	lt Fal	l Chinook	Sal	mon Pre-s	seas	on Run Size Fore	casts, by s	Stock and	Age				
Age	Lower River Hatchery Stock	/	Lower River Wild Stock		Bonneville Pool Hatchery Stock	e	Upriver Bright Stock		MidCol. Bright Stock (BUB + PUB)	SAB's Select Area Bright Stock	Total Columbia River Run		Bonn. Upriver Bright Stock	MCB	s Pool Upriver Bright Stock	
β	44.1	a/	2.5	d/	126.2	h/	195.4	k/	20.1	N/A	388.3		7.1	0/	13.0	s/
4	43.8	b/	6.7	e/	34.2	i/	174.8	I/	41.0	N/A	300.5		15.2	p/	25.8	t/
5	7.0	c/	9.7	f/	0.1	j/	129.8	m/	52.0	N/A	198.6		4.5	q/	47.5	u/
6	NA		0.0	g/	NA		0.3	n/	0.2	N/A	0.5		0.0	r/	0.2	V
Total	94.9		18.9		160.5		500.3		113.3	12.3	900.2	w/	26.8		86.5	
a/ 2's vs 3' b/ 3's vs 4' c/ 4/5 coho d/ Recent e/ 3's vs 4' f/ 4/5 coho g/ No predi h/ Max obs i/ 3/4 coho j/ No predii k/ 2/3 coho l/ 3's vs 4's	s (BY 81- s (BY 80- ort ratio 8. 10 yr avg s (BY 75- rt ratio 2.2 iction served sin rt ratio 3.0 ction ort ratio .5 s (BY 86-1	11) r2 10) r2 3606 return 10) r2 2374 (ce 19 0571 (995 ((0) r2=	=.86 =.91 (02-09) =.81 94-09) 99 81-10) 00-11) =.87					m/ n/ p/ q/ r/ s/ t/ u/ v/ v/ w/	Recent 5 yr avg Recent 5 yr avg 2/3 cohort ratio . 3's vs 4's (BY 77 4/5 cohort ratio 5 No prediction 2/3 cohort ratio . 3's vs 4's (BY 84 Recent 5 yr avg Recent 5 yr avg Total includes S/	cohort 3.99 return 2111 (93-1 -10) r2=.59 5.2795 (92- 4168 (88-1 -10) r2=.71 cohort 2.64 return ABs	142 1) 09) 1) 37					

HANFORD REACH RETURNS

HANFORD REACH ESCAPEMENT

	Hanford Reach URB										
Return			Aş	ge							
Year	2	3	4	5	6	Total					
2014	30,664	10,596	122,950	7,507	48	171,764					
2013	16,573	46,341	54,247	5,613	75	122,850					
2012	4,706	11,387	19,306	16,172	0	51,571					
2011	8,841	4,972	38,957	10,726	152	63,649					
2010	6,608	17,133	32,622	23,942	68	80,372					
2009	10,210	2,456	11,055	6,627	0	30,348					
2008	5,697	2,015	8,657	10,110	45	26,524					
2007	7,806	1,365	6,824	4,576	348	20,920					
2006	4,606	3,716	11,235	25,120	532	45,210					
2005	7,612	6,240	26,463	19,836	674	60,824					
2004	8,006	7,860	15,685	45,663	1,806	79,019					
2003	11,196	4,677	41,334	31,449	81	88,737					
2002	14,200	9,581	35,410	14,716	50	73,957					
2001	15,047	8,777	22,091	9,484	486	55,884					
Mean	10,841	9,794	31,917	16,539	312	69,402					

JUNENILE TO ADULT CWT EXPANSIONS

Brood	Release	Pelessed	AACONT	CWT Only		DIT AM	Unmarked	Expai	ision
Year	Year	Keleased	Au/C w I	Cwr Omy	AD Olity	FII (NM)	(no clips/tags)	Ad/CWT	All CWT
2013	2014	7,267,248	603,417	603,439	2,712,975	42,998	3,304,419	12.0	6.0
2012	2013	6,822,861	603,930	601,009	2,712,228	44,083	2,861,611	11.3	5.7
2011	2012	7,056,948	595,608	598,031	2,768,651	42,844	3,051,814	11.8	5.9
2010	2011	6,798,390	602,580	1,108,990	1,702,961	2,994	3,380,865	11.3	4.0
2009	2010	6,776,651	619,594	1,026,605	1,718,104	1,995	3,410,353	10.9	4.1
2008	2009	6,788,314	216,137		1,702,264	2,994	4,866,919	31.4	31.4
2007*	2008	4,548,306	202,568		813	3,000	4,341,925	22.5	22.5
2006	2007	6,743,101	202,000			3,000	6,538,101	33.4	33.4
2005	2006	6,876,290	199,445		1,628,614	3,000	5,045,231	34.5	34.5
2004	2005	6,599,838	200,072			3,000	6,396,766	33.0	33.0
2003	2004	6,814,560	399,116			3,000	6,412,444	17.1	17.1
2002	2003	6,777,605	355,373			3,000	6,419,232	19.1	19.1
2001	2002	6,779,035	219,926			3,000	6,556,109	30.8	30.8
2000	2001	6,862,550	200,779			3,000	6,658,771	34.2	34.2

JUVENILE TO ADULT CWT EXPANSIONS

			Hatchery Origin							
Year	Sampled	Priest	Ringold	Other	Total	Origin				
2014	77,259	80.9%	1.5%	1.1%	83.5%	21				
2013	41,636	71.7%	3.1%	0.4%	75.2%	9				
2012	28,039	68.0%	1.2%	0.3%	69.5%	4				
2011	20,823	61.3%	0.5%	0.1%	61.9%	1				
2010	19,169	60.2%	0.3%	0.3%	60.8%	1				
2009	12,778	42.8%	0.0%	0.4%	43.2%	2				
2008	321	49.1%	0.1%	0.7%	49.9%	0				
2007	6,000	67.1%	0.0%	0.3%	67.4%	4				
2006	8,223	49.0%	0.2%	0.0%	49.3%	0				
2005	10,616	62.2%	0.4%	0.4%	63.0%	1				
2004	15,886	76.3%	0.7%	0.1%	77.1%	1				
2003	9,757	84.4%	2.2%	0.2%	86.8%	1				
2002	12,401	83.5%	0.8%	1.2%	85.5%	3				
2001	15,317	79.4%	3.8%	1.3%	84.5%	3				
2000	7,678	73.7%	3.8%	0.6%	78.1%	0				
1999	23,359	68.9%	0.3%	0.6%	69.8%	5				
1998	16,175	69.8%	0.5%	0.6%	70.9%	1				
1997	12,461	77.8%	0.0%	0.7%	78.5%	1				
Mean	18,772	68.1%	1.1%	0.5%	69.7%	3				

ADULT TO ADULT CWT EXPANSIONS

	Age 2	Age 3	Age 4	Age 5	Age 6	Total	
Priest Rapids Return	12,073	20,821	42,385	1,980	0	77,259	
Priest Rapids Origin	11,907	20,505	41,354	1,883	-4	75,645	
Adult to Adult	6.234	7.899	4.743	4.626		5.549	
"J to A" CWT Expansion	5.662	5.912	3.972	4.117		4.583	
CWTs							
Priest Rapids	1,910	2,596	8,719	407		13,632	
Ringold Springs	8	9	52	5		74	
Hanford Reach URB	5	3	13			21	
Other Hatchery	28	85	153	8	4	278	
Total	1,951	2,693	8,937	420	4	14,005	
CWT Juvenile Expansions							% of Return
Priest Rapids	10,815	15,348	34,632	1,675		62,471	80.9%
Ringold Springs	118	154	811	84		1,166	1.5%
Hanford Reach URB	0	0	0			0	0.0%
Other Hatchery	48	162	220	13	4	448	0.6%
Total	10,981	15,664	35,663	1,772	4	64,085	82.9%
Priest Rapids %	98.5%	98.0%	97.1%	94.5%	0.0%	97.5%	

HANFORD REACH NATURAL ORIGIN RETURNS

Brood		Age										
Year	2	3	4	5	6	Total						
2012	34,617											
2011	18,892	15,629										
2010	8,551	54,423	143,365			206,340						
2009	10,563	15,481	57,668	8,914		92,625						
2008	7,128	6,812	21,845	5,777	87	41,648						
2007	12,453	21,926	44,541	17,313	75	96,309						
2006	7,005	3,686	36,182	11,511	0	58,383						
2005	8,594	4,200	14,575	25,520	152	53,041						
2004	5,057	2,622	10,575	7,673	68	25,997						
2003	8,044	4,096	10,464	11,031	18	33,652						
2002	8,711	6,950	12,569	5,477	52	33,759						
2001	11,803	9,966	29,332	26,089	368	77,558						
2000	14,895	5,432	18,073	21,510	574	60,484						
1999	16,069	10,421	44,803	48,619	761	120,673						
1998	11,984	10,974	38,006	32,755	1,869	95,588						
1997	3,033	2,345	24,134	16,105	81	45,698						
Mean	11,712	11,664	36,152	18,330	342	61,899						

COMPOSITION OF RETURN

NOR Con	tributions t	o Hanford	Reach			Priest Ra	pids Hatch	ery Contril	butions to	Hanford R	each
Year	Stream	Sport	Priest Rapids	Ringold Springs	Return	Year	Priest Rapids	Sport	Stream	Ringold Springs	Return
2014	84.8%	13.0%	2.2%	0.0%	202,611	2014	84.7%	4.7%	10.5%	0.1%	89,291
2013	89.8%	9.3%	0.9%	0.0%	136,835	2013	45.6%	10.1%	44.0%	0.4%	88,675
2012	81.6%	15.8%	2.6%	0.0%	63,191	2012	74.6%	15.3%	9.7%	0.3%	37,029
2011	86.5%	13.1%	0.4%	0.0%	73,579	2011	72.8%	8.5%	18.0%	0.7%	28,476
2010	88.5%	11.0%	0.5%	0.0%	90,824	2010	77.2%	7.2%	14.9%	0.7%	24,753
2009	79.0%	19.6%	1.4%	0.0%	38,406	2009	64.2%	6.4%	29.2%	0.2%	19,836
2008	80.7%	19.3%	0.0%	0.0%	32,863	2008	86.4%	2.6%	11.0%	0.0%	22,489
2007	76.0%	18.8%	5.2%	0.0%	27,525	2007	70.0%	13.7%	16.3%	0.0%	8,491
2006	93.4%	6.6%	0.0%	0.0%	48,384	2006	53.3%	8.4%	38.4%	0.0%	15,356
2005	91.3%	8.3%	0.3%	0.0%	66,597	2005	46.4%	8.8%	44.1%	0.6%	22,608
2004	90.6%	9.2%	0.2%	0.0%	87,237	2004	68.1%	2.1%	29.8%	0.1%	23,139
2003	93.5%	6.4%	0.1%	0.0%	94,874	2003	56.7%	3.5%	39.7%	0.0%	16,641
2002	93.1%	6.6%	0.3%	0.0%	79,476	2002	54.6%	9.7%	35.7%	0.0%	22,599
2001	90.4%	9.3%	0.2%	0.0%	61,800	2001	83.7%	2.3%	13.8%	0.3%	17,370
Mean	87.1%	11.9%	1.0%	0.0%	78,872	Mean	67.0%	7.4%	25.4%	0.3%	31,197

	PRH - 98,572	Hatchery	Stream	Sport Fishery	Ringold Springs
Marra (2001-2012)	% of Return	67.0%	25.4%	7.4%	0.3%
Mean (2001-2013)	Return (#)	<mark>66,043</mark>	25,037	7,294	296
2014 Return	% of Return	84.7%	10.5%	4.7%	0.1%
	Return (#)	<mark>83,490</mark>	10,350	4,633	99

COMPOSITION OF SPORT FISHERY

Return	NOP		% Hatcher	y Origin		Hawyort
Year	NORS	Combined	PRH	RSRF	OOB	narvest
2014	81%	19%	13%	5%	1%	32,417
2013	46%	54%	32%	20%	2%	27,630
2012	53%	47%	30%	16%	1%	18,854
2011	68%	32%	17%	14%	1%	14,262
2010	80%	20%	14%	6%	0%	12,499
2009	85%	15%	14%	0%	0%	8,806
2008	90%	10%	8%	1%	0%	7,013
2007	80%	20%	18%	1%	1%	6,466
2006	70%	30%	28%	1%	0%	4,506
2005	70%	30%	25%	5%	0%	7,978
2004	91%	9%	5%	3%	0%	8,787
2003	84%	16%	8%	7%	1%	7,190
2002	63%	37%	26%	8%	3%	8,325
2001	83%	17%	6%	10%	1%	7,001
Mean	74.6%	25.4%	17.6%	6.8%	0.9%	12,267

HARVEST MANAGEMENT PLAN

Return < 36,000

Anglers will be restricted to 10% of the Return

If the estimated return is 28,000, the allowable sport harvest is 2,800 adult chinook.

28,000 x 10% = 2,800 Chinook

Escapement = 28,000 - 2,800 = 25,200

Return > 36,000

Fish above the escapement goal will be divided equally between the sport fishery and the spawning escapement

If the estimated return is 46,000, the allowable sport harvest is 8,600 adult Chinook.

46,000 - 28,800 = 17,200 Chinook

50% of the excess is available for the sport fishery

17,200 ÷ 2 = 8,600

IN-SEASON RETURN ESTIMATES

MCN-PRD-IHR thru Sept 15 thru Sept 23 thru Sept 30 thru Oct 7 thru Oct 10 thru Oct 15 Adult % Adult % Adult % Adult % Adult % Adult % Year 2014 125,970 69% 176,031 96% 206,007 112% 220,619 120% 225,163 122% 229,571 125% 67,310 117% 165,547 2013 38% 123,400 71% 205,186 171,119 98% 168,947 97% 95% 80,475 133% 2012 49,012 76% 71,873 111% 124% 83,138 128% 84,246 130% 86,153 34,737 45% 61,546 80% 73,818 95% 81,216 105% 84,828 110% 90,794 117% 2011 73% 94,570 111,691 126% 46.037 50% 66,490 103% 107,798 118% 122% 115,101 2010 33.257 122% 2009 27,719 84% 101% 40,182 42.359 129% 44,171 134% 44.850 136% 2008 24,921 86% 38,713 133% 41,777 144% 45,598 105% 47,199 128% 47,825 165% 2007 10,300 56% 11,062 60% 18,256 99% 19,179 107% 19,198 119% 19,146 103% 46,074 55,031 2006 21,245 42% 32,777 64% 90% 52,701 143% 136% 58,087 114%

111%

100%

104%

117%

129%

141%

109%

108%

114%

89,339

100.152

106,780

98.029

69,900

23,541

39,216

44,002

50,982

60,137

122%

114%

141%

103%

119%

80%

132%

168%

119%

100,036

101.925

108.162

99.243

71.438

23,587

40,396

46,217

51,501

62,162

142%

132%

123%

126%

126%

48%

131%

148%

122%

90,257

105.227

110.890

100.825

72,403

23,552

41,929

48,468

49.305

62,520

126%

120%

116%

132%

146%

60%

131%

148%

123%

McNary AFC – Priest Rapids AFC – Ice Harbor AFC

IN-SEASON RETURN ESTIMATES

McNary AFC - Priest Rapids AFC - Ice Harbor AFC

Fall Chinook Work Group Final Meeting Minutes 31 March 2015

42,353

50.837

43.781

54.973

33.926

16,998

17,169

15,120

25.266

2005

2004

2003

2002

2001

2000

1999

1998

1997

Mean

59%

58%

46%

72%

68%

43%

53%

46%

58%

66,242

73.830

83,660

77,376

57,184

21,281

25,845

24,760

41.369

45,181

92%

84%

87%

101%

115%

54%

80%

76%

86%

80,095

87.810

100.049

89,771

64,320

55,758

35,113

35,346

47.475

57.079

Weekly Harvest (avg 2005-08)			Cummulative Harvest by Week			
	Adult	Jack	Total	Adult	Jack	Total
Aug 16 - 17	3	0	3	0%	0%	0%
Aug 18 - 24	2	0	2	0%	0%	0%
Aug 25 - 31	6	0	6	0%	0%	0%
Sept 1 - 7	90	33	123	2%	3%	2%
Sept 8 - 14	304	65	369	7%	13%	8%
Sept 15 - 21	769	113	882	20%	24%	21%
Sept 22 - 28	1,030	191	1,221	39%	41%	39%
Sept 29 - Oct 5	1,280	230	1,509	63%	64%	63%
Oct 6 - 12	990	160	1,150	81%	7 9 %	81%
Oct 13 - 19	834	171	1,004	9 7%	94%	9 7%
Oct 20 - 26	10 7	15	122	99 %	95%	99 %
Average	5,461	1,023	6,484			

WEEKLY & CUMULATIVE HARVEST

By September 15, We have a rough estimate of the return and can reduce harvest by closing the season or reducing the daily limit

Attachment 2

Presentation by Geoff McMichael on Qualitative Assessment of Egg Loss in the Hanford Reach

Outline

Background

- Methods
- Results
- Context
- Discussion

Background

- Hanford Reach fall Chinook salmon driver stock for several fisheries that involve the PSC (e.g. SEAK and NBC)
- Hanford Reach fall Chinook salmon population highly productive
 - BY 1975–2004 mean egg-to-presmolt survival = 35% (Harnish et al. 2014)
 - 2011 fertilized egg-to-fry survival ~ 70% (Oldenburg et al. 2012)
- Reduced productivity associated with escapements over 42,000 State's escapement goal is 28,800
 MSY at 37,639 (Harnish et al. 2012)
- Record high escapement in 2014
 - Over 150,000 adults (+31,000 jacks)
 - Additional 91,000 adults returned to hatcheries in the Hanford Reach (with about 6k needed for brood)
 - Sport harvest of over 32,000 fish

2014 provided opportunity to begin to look into DD mechanisms

Density Dependence

Mechanisms unknown

• Possibilities...

- Spawning habitat
 - Evidence of 'superimposition' in the past
 - Most habitat models say there is more available than is used (changes since hydro development)
 - Superimposition could lead to later emergence/smaller size/later emigration
- Early rearing juvenile habitat/food

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

	Sample Dates					
			_			
Sample Date	Site(s)	Method	Obs Time	PRD Discharge		
10/29/14	VB, CB, Ref, 604, Island 4	snorkeling, video	49:10	58		
11/2/14	VB, CB, Ref, D, Island 4	snorkeling, video	1:21:10	50		
11/8/14	VB, CB, Ref, D, Island 4	snorkeling, video	1:30:00	63		
11/18/14	VB, CB, D, Island 4	video	1:00:40	65		
11/23/14	VB-upper, VB- lower, VB-609, CB, D, Island 4	snorkeling, video	1:56:30	50		
11/30/14	VB	aerial photos	0:00	>100		
11/26/14	Channel below PRH	video	0:30:00	NA		

2010 Egg Drift

 Drift net egg data (2010adult escap~80k)

- a lot of egg drift related to near-bed velocity
- Most eggs were 24-48 after fertilization
- Most fertilization took place at night

Discussion - Conclusion

 If eggs were dug up, we may have not detected them

- Oldenburg et al. (2012) captured many drifting eggs mostly at night when flows were high
- Many scavengers
 - Mountain whitefish, sturgeon, birds
- Conclusion
 - It was not obvious that superimposition resulted in widespread loss of buried eggs
 - Spawning habitat <u>may</u> not be a primary factor in the density dependence (big caveat)